UNCLASSIFIED

POSTGRESQL 9.X
SUPPLEMENTAL PROCEDURES

Version 1, Release 1

20 January 2017

Developed by DISA for the DoD

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

Trademark Information

Names, products, and services referenced within this document may be the trade names,
trademarks, or service marks of their respective owners. References to commercial vendors and
their products or services are provided strictly as a convenience to our users, and do not
constitute or imply endorsement by DISA of any non-Federal entity, event, product, service, or
enterprise.

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD
Table of Contents

Page

1. INTRODUGCTION. . ..ottt sttt b e be e s et e b e sesbestesbeereaseaneans 1
2. APPENDICES ... bbbt bbb ne s 2
2.1 Appendix A: Supplemental Content for PGS9-00-011600..........cccccverviieiveriesieseereeeeen 2
2.2 APPENAIX B PGAUIT ..ot ettt 5
2.2.1 INStalliNGg PUAUITveeiieieieee et reesae e e nreene s 5
2.2.2 CONFIGUIALTIONeiitieciece et esbe e teereesreenaeaneenneeeeas 6
2.3 APPENAIX C: LOGUING .. titiiiiriieiieieiesie sttt sttt r bbbt abenne s 8
P I YLV 1= 8 (o 1 o o ST SRSPRSSN 8
2.3.2 WRNAETO L0 .ttt bbbt bbb n e 9
P TG VLT o T (0 1 o o ISR 10
2.4 Appendix D: Row-Level Security EXamPIeccooiiiiiiiiiiiiiiceeee e 11
2.4.1 ROW-LEVE] SECUMLY SEIUP ..cviiieiieie ettt rs 11
2.4.2 RESUITS......eiieieiee ettt ettt s et et n et et ne et et ne e reeneaneenren 12
2.5 Appendix E: Installing a PostgreSQL Cluster with pgeryptoccccecvvevvivieieeneiiecienns 13
2.5.1 Installing pgcrypto EXIENSIONccueiuiiiiiiiiiieieiee e 13
2.6 Appendix F: Finding the PostgreSQL Configured Data Directory (PGDATA)................ 13
2.6.1 HOW 0 FINA PGDATA ..ottt sttt na e naens 13
2.6.2 Export PGDATA Variable in .bashrc.........cccccooveiiiiiiccce e 13
2.7 Appendix G: PostgreSQL SSL Configurationcccooereieiineninieeienesesee s 14
2.7.1 Creating CertifiCatesciveiiiiiiicie e ns 14
2.7.2 Configuring POSGreSQLcoviiiiiiiiiiii i 17
2.7.3 Client ConfiguIationcccoiiiiiieie e 19
2.7.4 RUNNING the CHIENT......ociiiiiec s 20
iii

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

1. INTRODUCTION

The instructions and code samples in this document are provided to assist with the
implementation of the Fixes in the main STIG document. As with the STIG, they are based on
the assumption that the operating system is Red Hat Enterprise Linux (RHEL). They are
examples that will be useful in many PostgreSQL deployments. However, it is important that the
reader (database administrator/system administrator) verify that each example is applicable to the
installation in question and tailor it as necessary.

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

2. APPENDICES

2.1 Appendix A: Supplemental Content for PGS9-00-011600

#!/bin/bash
Lock: Switch roles to NOLOGIN, keep track of the roles that are switched
Restore: Switch roles to LOGIN, only the roles found in .restore_login

lock_login=false

restore_login=false

current_dir=$(pwd)
restore_file="${current_dir}/.restore_login"

e S s
Get Options - database_name, help, lLock user Llogins, restore logins
e e e o e e e L s e e s s s e st
while getopts ":d:hlr" opt
do
case ${opt?} in
d) database name=${OPTARG?} ;;
h) echo "$0 -d <database name> -1 (lock)|-r (restore)"; exit 0;;
1) lock_login=true ;;
r) restore_login=true ;;
*) echo "Invalid argument: $0 -d <database_name> -1 (lock)|-r
(restore)"; exit 1;;
esac
done

B B B B e B e e e L T e e e et e e e
Make sure an option is set
HUH U
if (! ${lock _login?} && ! ${restore_login?})
then

echo "Must choose lock or restore login access"”

echo "$0 -d <database_name> -1]|-r"

exit 1
fi

e S s
No options or both options detected, error out
HHHH B R
if [$# -ne 3] || (${lock _login?} && ${restore_login?})
then

echo "Must choose lock or restore login access"”

echo "$0 -d <database_name> -1|-r"

exit 1

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1

DISA

20 January 2017 Developed by DISA for the DoD

fi

B e S o i
Keep trackR of users that we disable/restore so we don't restore

access to users that have been Locked already by DBA
B B B B e B e e e L T e e e gt e e e
role_array=()

if [[! -f ${restore_file?} 1]
then
touch ${restore_file?}
chmod 660 ${restore file?}
else
readarray -t role_array < ${restore_file?}
fi

e S s
Lock detected but restore file has users - need to restore access
first so we don't Lose track of users
B B B B e B e e e L T e e e gt e e e
if ((${lock_login?} && ${#role array[@]?} > 0))
then

echo "Lock triggered but roles are already disabled. Restore access then
relock:"

echo "$0 -d <database name> -r"

exit 1
fi

B B B e B e B e e e L T e e e et e e e
Lock users from lLogin and disconnect their current session
HHHRHBHB AR AR H B R B AR AR AR B R B AR H R B AR AR AR R B AR AR
if ${lock login?}
then

roles=($(psql -d ${database _name?} -A -t -q -c "SELECT rolname, rolcanlogin
FROM pg_roles"))

if [[$? !'=0 1]

then

exit 1
fi

for role in ${roles[@]?}

do
rolname=$(echo ${role?} | awk -F'|' '{print $1}")
rolcanlogin=$(echo ${role?} | awk -F'|' '{print $2}")
if [[${rolname?} != 'postgres' 1]
then

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD
if [[${rolcanlogin?} == 't']]
then

psql -q -c "ALTER ROLE ${rolname?} NOLOGIN"
if [[$? !'=0 1]
then
echo "Error altering role. Exiting.."
exit 1
fi
echo ${rolname?} >> ${restore_file?}

psql -q -c "SELECT pg terminate_backend(pid) FROM
pg_stat_activity WHERE usename='${rolname?}'" >& /dev/null
if [[$2 !'= 0]]
then
echo "Error terminating role cyrrebt session. Exiting.."
exit 1
fi
fi
fi
done
echo "Lock success”
e e e e e o s e e e s s e st
Restore users login
B B B B e B e e L e e e et e e e
else
if ((${#role_array[@]?} <= 0))
then
echo "Nothing to restore”
exit o
fi

for rolname in ${role_array[@]?}

do
psql -q -c "ALTER ROLE ${rolname?} LOGIN"
if [[$2 !'= 0]]
then
echo "Error altering role. Exiting.."
exit 1
fi
done

> ${restore_file?}
echo "Restore success"
fi

exit o

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

2.2 Appendix B: pgaudit
The following are the core instructions for installing a PostgreSQL cluster with pgaudit.

If PostgreSQL is already installed, it is still necessary to ensure that all the software mentioned
on this page is present on the server to support pgaudit.

Note: The following instructions use the PGDATA environment variable. See Appendix F for
instructions on configuring PGDATA.

2.2.1 Installing pgaudit

First we require PostgreSQL to be installed. In this example we are using Red Hat Enterprise
Linux 7 RPMs. The appropriate RPM URL should be used from the following webpage:
http://yum.postgresql.org/9.5/

$ sudo yum update

$ sudo yum install bison flex gcc \
readline-devel zlib-devel perl-devel \
perl-ExtUtils-Embed openssl-devel \
pam-devel libxml2-devel libxslt-devel \
libuuid-devel openldap-devel tcl-devel \
python-devel

Next we install PostgreSQL 9.5:

$ sudo yum install http://yum.postgresql.org/9.5/redhat/rhel-7-x86_64/pgdg-
redhat95-9.5-2.noarch.rpm

$ sudo yum install postgresql95 postgresql95-contrib \
postgresql95-devel postgresql95-docs \
postgresql9o5-1ibs postgresql95-server

Now that PostgreSQL is installed, we need to set PATH to point to the new binaries:

$ export PATH=/usr/pgsql-9.5/bin:$PATH
$ pg_config --configure

With PostgreSQL installed, we can now install pgaudit.

In this example we are using Git. The source code can be uploaded to the webserver by different
means, depending on your organization’s rules.

UNCLASSIFIED

http://yum.postgresql.org/9.5/

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ cd /usr/pgsql-9.5/share/contrib/
$ sudo git clone https://github.com/pgaudit/pgaudit.git
$ cd ./pgaudit

$ sudo PATH=/usr/pgsql-9.5/bin:$PATH make USE_PGXS=1 install

pgaudit is built and ready to be configured. First the database needs to be initialized:

$ sudo /usr/pgsql-9.5/bin/postgresql95-setup initdb
$ sudo systemctl enable postgresql-9.5

Now as the postgres user, add pgaudit to the shared_preload_libraries in postgresgl.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Change shared_preload_libraries to the following:

shared_preload libraries = 'pgaudit'’

As a sudo user, start the PostgreSQL server:

$ sudo systemctl start postgresql-9.5

$ sudo service postgresql-9.5 start

pgaudit is now installed and ready to be configured.

2.2.2 Configuration

pgaudit is configured using either the postgresgl.conf or an included configuration file (see
Optional Configuration Organization).

For a complete list of configuration parameters, see https://github.com/pgaudit/pgaudit#settings

UNCLASSIFIED

https://github.com/pgaudit/pgaudit#settings

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1
20 January 2017

DISA
Developed by DISA for the DoD

2.2.2.1 Example Settings for postgresql.conf

Enable catalog logging - default is 'on'
pgaudit.log catalog='on'

pgaudit.log level='log'
Log the parameters being passed
pgaudit.log parameter='on'

pgaudit.log relation="off"'

time
pgaudit.log statement_once='off’

pgaudit.role=""
Choose the statements to Log:
READ - SELECT, COPY

FUNCTION - Function Calls and DO Blocks

ROLE - GRANT, REVOKE, CREATE/ALTER/DROP ROLE
DDL - ALL DDL not included in ROLE

MISC - DISCARD, FETCH, CHECKPOINT, VACUUM
pgaudit.log="'ddl, role, read'

HOH OB B OB OB OB W R

Specify the verbosity of Log information (INFO, NOTICE, LOG, WARNING, DEBUG)

Log each relation (TABLE, VIEW, etc.) mentioned in a SELECT or DML statement

For every statement and substatement, Log the statement and parameters every

Define the master role to use for object lLogging

WRITE - INSERT, UPDATE, DELETE, TRUNCATE, COPY

2.2.2.2 Setting log_line_prefix

It is advisable to change log_line_prefix in postgresql.conf to match your auditing needs.

At a minimum, it is suggested to set the parameter to the following:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

log line_prefix = '%m %u %d:

This will prefix all logged events with:

< 2016-01-28 19:43:12.126 UTC bob postgres: >

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

2.3 Appendix C: Logging

The following are the core instructions for enabling logging in PostgreSQL.
Note: The following instructions use the PGDATA environment variable. See Appendix F for
instructions on configuring PGDATA.

2.3.1 Where to Log

2.3.1.1 stderr

PostgreSQL can be configured to use stderr for logging. This allows the server to log events
from the database to a directory specified in postgresql.conf.

e Configuring stderr Logging

As the database administrator (shown here as postgres), edit the postgresgl.conf file:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

The following parameters must be configured:

log_destination = 'stderr’
logging_collector = on

log _directory = 'pg log'

log _filename = 'postgresql-%a.log’
log _file_mode = 0600
log_truncate_on_rotation = on
log_rotation_age = 1d

log _rotation_size = ©

As a sudo user, reload the PostgreSQL server:

$ sudo systemctl reload postgresql-9.5

$ sudo service postgresql-9.5 reload

2.3.1.2 syslog

PostgreSQL can be configured to use syslog for logging. This allows the server to log events
from the database to a centralized location and give log ownership to root instead of the database
administrator (shown here as postgres). It is advised to use syslog whenever possible.

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

2.3.1.3 Configuring syslog Logging

Note: Syslog must be configured in your organization. The following instructions are only to
configure PostgreSQL to use syslog.

As the database administrator (shown here as postgres), edit the postgresgl.conf file:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

The following parameters must be configured:

log destination = 'syslog'
syslog facility = 'LOCAL@' # choose the facility that makes sense
syslog ident = 'postgres'

As a sudo user, reload the PostgreSQL server:

SERVER USING SYSTEMCTL ONLY
$ sudo systemctl reload postgresql-9.5

SERVER USING INITD ONLY
$ sudo service postgresql-9.5 reload

2.3.2 What to Log

PostgreSQL can log a variety of events out of the box. The following parameters can be set to
log additional information.

As the database administrator (shown here as postgres), edit the postgresql.conf file:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

The following parameters can be configured:

log_checkpoints = on
log_connections = on
log disconnections = on
log duration = off

UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1

DISA

20 January 2017 Developed by DISA for the DoD

log_error_verbosity = default

log hostname = off

log lock_waits = on

log_statement = 'none' # pgaudit will be configured to lLog specific events
log timezone = 'UTC'

Additionally, log_line_prefix can be configured to include extra information:

log line_prefix = '< %m %a %u %d %c %s %r >'
xa
Zu = user name

application name

%d = database name

%r = remote host and port

%h = remote host

%p = process ID

%t = timestamp without milliseconds
Zm = timestamp with milliseconds
command tag

%e = SQL state

%c = session ID

%L = session Line number

%s = session start timestamp

%v = virtual transaction ID

%x = transaction ID (@ 1if none)
%q = stop here in non-session

H OH R OF R OHE R H R HE R HE R HE R KR
N
p=)
]

processes

2.3.3 When to Log

PostgreSQL allows administrators to control what levels of detail are exposed to logs,
administrators, and clients.

As the database administrator (shown here as postgres), edit the postgresgl.conf file:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

The following parameters can be configured:

client_min_messages = notice
log _min_messages = warning

10
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

log _min_error_statement = error
log min_duration_statement = -1

For more information on logging, see the official documentation:
http://www.postgresql.org/docs/current/static/runtime-config-logging.html

2.4 Appendix D: Row-Level Security Example

2.4.1 Row-Level Security Setup

This code creates a table “accounts” where rows may be labeled with a security label to filter
results based on role membership.

-- Create table with security Llabels
CREATE TABLE accounts (id SERIAL PRIMARY KEY, name TEXT NOT NULL,
phone_number TEXT NOT NULL, security_label TEXT);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

-- Create groups that map to security-labels
CREATE ROLE unclassified;
CREATE ROLE classified;

-- Add roles to groups
CREATE ROLE bob LOGIN IN GROUP unclassified;
CREATE ROLE alice LOGIN IN GROUP classified;

-- Dummy data

INSERT INTO accounts(name, phone_number, security_label)
VALUES ('bob', '123-456-7890', 'unclassified');

INSERT INTO accounts(name, phone_number, security_label)
VALUES ('alice', '@098-765-4321', 'classified');

-- Function to check if user is in group for security label filtering
CREATE OR REPLACE FUNCTION user_in_group(group_name TEXT, user_name TEXT)
RETURNS boolean
AS 'SELECT EXISTS(
SELECT grosysid FROM pg_group WHERE groname = $1
AND (SELECT usesysid FROM pg_user
WHERE usename = $2) = ANY(grolist));'
LANGUAGE SQL;

-- Row Llevel security policy for information
CREATE POLICY classification_filter ON accounts
USING ((SELECT user_in_group(accounts.security_label, current_user)));

11
UNCLASSIFIED

http://www.postgresql.org/docs/current/static/runtime-config-logging.html

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1
20 January 2017

DISA
Developed by DISA for the DoD

-- Allow access to table
GRANT SELECT ON accounts TO classified;
GRANT SELECT ON accounts TO unclassified;

-- Change to role bob and query table
SET ROLE bob;

SELECT current_user;

SELECT * FROM accounts;

RESET ROLE;

-- Change to role alice and query table
SET ROLE alice;

SELECT current_user;

SELECT * FROM accounts;

RESET ROLE;
-- Cleanup

DROP TABLE IF EXISTS accounts CASCADE;
DROP ROLE IF EXISTS bob, alice, classified, unclassified;

2.4.2 Results

current_user

id | name | phone_number | security label
S femmmmmmmm—ana- S
1 | bob | 123-456-7890 | unclassified

(1 row)

RESET
SET
current_user

12
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD
id | name | phone_number | security_label
e N e L e
2 | alice | @98-765-4321 | classified
(1 row)

2.5 Appendix E: Installing a PostgreSQL Cluster with pgcrypto
The following are the core instructions for installing a PostgreSQL cluster with pgcrypto.

2.5.1 Installing pgcrypto Extension
The pgcrypto extension is included with the PostgreSQL contrib package. Although included, it
needs to be created in the database.
This installation assumes that:
e The database has been initialized
e The contrib package is installed

As the database administrator (shown here as postgres), run the following:

$ sudo su - postgres
$ psql -c "CREATE EXTENSION pgcrypto"

pgcrypto is now ready for use. For more information on using pgcrypto, see the official
documentation: http://www.postgresgl.org/docs/current/static/pgcrypto.htmi

2.6 Appendix F: Finding the PostgreSQL Configured Data Directory (PGDATA)

2.6.1 How to Find PGDATA

To see where the data directory (PGDATA) is, run the following commands:

$ sudo su - postgres
$ psql -c "SHOW data_directory";

2.6.2 Export PGDATA Variable in .bashrc

After finding the configured data directory, it is handy to export the PGDATA variable in the
database owner's .bashrc file.

13
UNCLASSIFIED

http://www.postgresql.org/docs/current/static/pgcrypto.html

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

As the database administrator (shown here as “postgres”), edit the .bashrc file in home directory
of the user (this is just an example; use the result from the query above):

$ sudo su - postgres
$ echo "export PGDATA='/var/lib/pgsql/9.5/data’' >> ~/.bashrc"

Next, reload the .bashrc file:

$ sudo su - postgres
$ source ~/.bashrc

Last, verify the variable is set:

$ echo ${PGDATA?}

2.7 Appendix G: PostgreSQL SSL Configuration

The following instructions assume that OpenSSL is enabled on the server at the operating system
level. To be sure that OpenSSL is implemented using FIPS-certified modules, the operating
system must be Red Hat Enterprise Linux (RHEL).

These instructions will guide you through the process of configuring PostgreSQL to use SSL for
secure connections.

We will be placing an intermediate certificate authority (CA) in the chain of trust. While this is
not strictly necessary, it is a good idea as it allows you to keep your root CA safe (i.e., offline)
once the intermediate certificates have been created. In the case of a security breach, only the
intermediate certificate needs to be revoked.

We will show how to create a self-signed root CA for the purposes of demonstration. In practice,
use a DoD-approved CA.
2.7.1 Creating Certificates

2.7.1.1 Configuring openssl.cnf

First, default configuration for openssl.cnf needs to be changed to support signed Certification
Revocation lists (CRL) and certificates.

To find where openssl.cnf is located, execute the following command with a sudo user:

14
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ find / -name "openssl.cnf"

With the location of openssl.cnf found, edit the file, locate the [v3_ca] section, and uncomment
the following default:

keyUsage = cRLSign, keyCertSign

o Create Self-Signed CA (optional)

You will likely have a certificate signed by a trusted CA, but for some installations or to
just try out these instructions, you may want to create a self-signed certificate.

o Create Private Key

$ openssl genrsa -aes256 -out ca.key 4096

You will be required to enter a passphrase. This should be long and guarded well.

o Create Self-Signed Certificate

$ openssl req -new -x509 -sha256 -days 1825 -key ca.key -out ca.crt \
-subj "/C=US/ST=<STATE>/L=<LOCATION>/O=<ORGANIZATION NAME>/CN=root-ca"

2.7.1.2 Create Server/Client Intermediate CA

With the root CA created, next create the intermediate CAs that will be used to sign server and
client certificates.

e Create Server Intermediate Certificate

The following will create the server-intermediate key, signing request, and certificate.
You will be required to enter a passphrase. It is best not to reuse the passphrase from your
root key.

$ openssl genrsa -aes256 -out server-intermediate.key 4096

$ openssl req -new -sha256 -days 1825 -key server-intermediate.key -out server-
intermediate.csr \
-subj "/C=US/ST=<STATE>/L=<LOCATION>/O=<ORGANIZATION NAME>/CN=server-im-ca"

15
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ openssl x509 -extfile <OPENSSL.CNF_LOCATION_HERE> -extensions v3_ca -req -
days 1825 \

-CA ca.crt -CAkey ca.key -CAcreateserial \

-in server-intermediate.csr -out server-intermediate.crt

e Create Client Intermediate Certificate

$ openssl genrsa -aes256 -out client-intermediate.key 4096

$ openssl req -new -sha256 -days 1825 -key client-intermediate.key -out client-
intermediate.csr \
-subj "/C=US/ST=<STATE>/L=<LOCATION>/0O=<ORGANIZATION NAME>/CN=client-im-ca"

$ openssl x509 -extfile <OPENSSL.CNF_LOCATION HERE> -extensions v3 ca -req -
days 1825 \

-CA ca.crt -CAkey ca.key -CAcreateserial \

-in client-intermediate.csr -out client-intermediate.crt

2.7.1.3 Create Server/Client Certificate

Server and client certificates are signed by their respective intermediate CAs rather than the root
CA. Additionally, the common name on server certificates MUST match the hostname of the
server, and the common name of the client certificates MUST match the client's PostgreSQL user
logon (or be mapped in pg_ident.conf). The private keys will be created without passphrases to
allow automatic startup of the PostgreSQL server and client.

Create Server Certificate

Note: hostname should be entered for the common name. To find the hostname of your system,
run the following:

$ hostname

With your hostname configured, create the server certificate. (Note: Fill in CN with your
system’s hostname):

$ openssl req -nodes -new -newkey rsa:4096 -sha256 -keyout server.key -out
server.csr \

-subj "/C=US/ST=<STATE>/L=<LOCATION>/0O=<ORGANIZATION
NAME>/CN=<HOSTNAME_HERE>"

16
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ openssl x509 -extfile <OPENSSL.CNF_LOCATION HERE> -extensions usr_cert -req -
days 1825 \
-CA server-intermediate.crt -CAkey server-intermediate.key \
-CAcreateserial -in server.csr -out server.crt

e Create Client Certificate

Note: The common name for the client cert must be mapped to a postgres role. This can be done
by using a specific username or adding an ident_map.

$ openssl req -nodes -new -newkey rsa:4096 -sha256 -keyout client.key -out
client.csr \

-subj "/C=US/ST=<STATE>/L=<LOCATION>/O=<ORGANIZATION NAME>/CN=bob@ssl-
test.com”

$ openssl x509 -extfile <OPENSSL.CNF_LOCATION_HERE> -extensions usr_cert -req -
days 1825 \
-CA client-intermediate.crt -CAkey client-intermediate.key \
-CAcreateserial -in client.csr -out client.crt

2.7.2 Configuring PostgreSQL

The previous instructions built all the certificates required to enable SSL on PostgreSQL. The
following instructions will demonstrate how PostgreSQL is configured to use the certificates and
authenticate users via SSL.

2.7.2.1 Create Test Role
First, create a role that can log in and be used for testing the certificates:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob LOGIN"

2.7.2.2 Server Configuration

The examples below will use ${PGDATA?} as the data_directory setting in postgresgl.conf. To
find the location of the data_directory, run the following SQL.:

17
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ sudo su - postgres
$ psql -c "SHOW data_directory"

e Copy Root CA

Copy the root CA certificate to the PostgreSQL Data Directory:

sudo cp ca.crt ${PGDATA?}/ca.crt

sudo cp server.key ${PGDATA?}/server.key

sudo cat server.crt server-intermediate.crt ca.crt > ./server.crt.new
sudo cp server.crt.new ${PGDATA?}/server.crt

BB BB

e Set Permissions

$ sudo chown postgres:postgres \
${PGDATA?}/ca.crt \
${PGDATA?}/server.crt \
${PGDATA?}/server.key

$ sudo chmod 600 \
${PGDATA?}/ca.crt \
${PGDATA?}/server.crt \
${PGDATA?}/server.key

e Configure postgresgl.conf

Now configure postgresgl.conf with the SSL settings:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
ssl = true

ssl cert_file = 'server.crt'’
ssl key file = 'server.key'
ssl ca_file = 'ca.crt’

e Configure pg_ident.conf

In order to map system usernames to postgres roles, pg_ident must be configured.

The example common name for the client certificate is bob@ssl-test.com. Map that CN
to a postgres role to allow bob login:

18
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

$ sudo su - postgres
$ vi ${PGDATA?}/pg_ident.conf

Add the following parameters:

ssl-test bob@ssl-test.com bob

e Configure pg_hba.conf

Be sure that pg_hba.conf requires certs for the clients if you do not want them to be
optional. The following example will demonstrate making all users require SSL when
connecting locally (this is just a test). Note: Comment out any other entries that may be
in the authentication file already.

hostssl all all 127.0.0.1/32 cert clientcert=1 map=ssl-test
hostssl all all ::1/128 cert clientcert=1 map=ssl-test

As a system administrator, restart the PostgreSQL server:

$ sudo systemctl restart postgresql-9.5

$ sudo service postgresql-9.5 restart

2.7.3 Client Configuration
The examples below assume you are logged on to the OS as the user you want to configure.

$ mkdir ~/.postgresql

$ cp ca.crt ~/.postgresql/root.crt

$ cp client.key ~/.postgresql/postgresql.key

$ cat client.crt client-intermediate.crt ca.crt > ~/.postgresql/postgresql.crt

19
UNCLASSIFIED

UNCLASSIFIED

PostgreSQL 9.x Supplemental Procedures, V1R1 DISA
20 January 2017 Developed by DISA for the DoD

2.7.3.1 Set Permissions

$ chmod 600 \
~/.postgresql/root.crt \
~/ .postgresql/postgresql.key \
~/.postgresql/postgresql.crt

Note: These files can also be configured with environment variables. See
http://www.postgresql.org/docs/current/static/libpg-ssl.html for more information.

2.7.4 Running the client

When running client software, it is best to use the verify-full ssl mode. See the link in Client
Configuration for a description of what the ssl modes mean and what level of protection they
provide.

Following is an example using psql:

$ psql "postgresql://<HOSTNAME>:<PORT>/postgres?sslmode=verify-full” -U bob

20
UNCLASSIFIED

http://www.postgresql.org/docs/current/static/libpq-ssl.html

	1. Introduction
	2. Appendices
	2.1 Appendix A: Supplemental Content for PGS9-00-011600
	2.2 Appendix B: pgaudit
	2.2.1 Installing pgaudit
	2.2.2 Configuration
	2.2.2.1 Example Settings for postgresql.conf
	2.2.2.2 Setting log_line_prefix

	2.3 Appendix C: Logging
	2.3.1 Where to Log
	2.3.1.1 stderr
	2.3.1.2 syslog
	2.3.1.3 Configuring syslog Logging

	2.3.2 What to Log
	2.3.3 When to Log

	2.4 Appendix D: Row-Level Security Example
	2.4.1 Row-Level Security Setup
	2.4.2 Results

	2.5 Appendix E: Installing a PostgreSQL Cluster with pgcrypto
	2.5.1 Installing pgcrypto Extension

	2.6 Appendix F: Finding the PostgreSQL Configured Data Directory (PGDATA)
	2.6.1 How to Find PGDATA
	2.6.2 Export PGDATA Variable in .bashrc

	2.7 Appendix G: PostgreSQL SSL Configuration
	2.7.1 Creating Certificates
	2.7.1.1 Configuring openssl.cnf
	2.7.1.2 Create Server/Client Intermediate CA
	2.7.1.3 Create Server/Client Certificate

	2.7.2 Configuring PostgreSQL
	2.7.2.1 Create Test Role
	2.7.2.2 Server Configuration

	2.7.3 Client Configuration
	2.7.3.1 Set Permissions

	2.7.4 Running the client

